
LARGE COMPUTATIONAL ERRORS

Mihail Konstantinov, Petko Petkov

Abstract. We derive bounds for the average rounding errors in double
precision binary arithmetic (DPBA) obeying the 754-2019 IEEE Standard
for floating-point arithmetic. The results are based on an alternative repre-
sentation of the sets of normal and subnormal machine numbers. We also
consider numerical computations in DPBA with unexpectedly large errors
which may lead to numerical catastrophes without warning for the user.
This may cause catastrophes with material damage and human casualties.
Numerical examples are given which illustrate the theoretical results. The
computations are done in MATLAB computing environment.

Key words: floating-point arithmetic, rounding errors, large error com-
putations, numerical catastrophes.

Mathematics Subject Classification: 65G50

1. Introduction

In this paper we present new bounds for the average rounding er-
rors in double precision binary arithmetic (DPBA) obeying the 754-2019
IEEE Standard for floating-point arithmetic [2]. Note that usually maximal
rounding errors are analyzed. At the same time average rounding errors
may be more relevant in many practical problems. The results obtained
are based on an alternative representation of machine numbers and a new
topology of both the sets of normalized and subnormal machine numbers.

We also consider numerical computations in DPBA with unexpect-
edly large errors. This may lead to numerical catastrophes which appear
without any warning for the user. In turn, large error computations may
cause real life catastrophes with material damage and human casualties.
The computations are done in MATLAB R© computing environment.

The DPBA consists of the set of machine numbers (MN) which are
binary fractions including zero, and the rules for performing arithmetic op-
erations with MN. For machine arithmetic with different precision the re-
sults are similar to these presented below since they are formulated mainly
in terms of the rounding unit of DPBA. In what follows the symbol >>

31

October 22–24, 2021, Plovdiv, Bulgaria

denotes the start of a MATLAB R© command line, while “:=” means “equal
by definition”.

We denote by Z = {0,±1,±2, . . . } the set of integers and by R =
(−∞,∞) and R+ = [0,∞) ⊂ R the sets of real and non-negative real
numbers, respectively. For p, q ∈ Z and p ≤ q we set Z(p, q) = {p, p +
1, . . . , q} ⊂ Z. The set of binary fractions A× 2B is denoted as F, where
A,B ∈ Z and the integer A is odd or zero.

For a, b ∈ R+ and a < b the notation J (a, b) stands for any interval
with end points a and b. Let M = M− ∪M+ be the set of MN, where M+

is the set of non-negative MN and the symbol Inf. Thus we assume that
0 ∈ M+ and deal with rounding of non-negative numbers as a function
from R+ to M+. The set M contains normal and subnormal numbers. The
number of elements of a set M is denoted as card(M).

Some important MN used throughout this paper are as follows.

1. The rounding unit ρ = 2−53 ' 1.1102× 10−16

2. The machine epsilon (denoted as eps) ε = 2−52 ' 2.2204× 10−16

3. The number N = 252 ' 4.5036 × 1015 of MN in an interval
[2m, 2m+1)

4. The maximal normal MN (denoted as realmax) R = 21023(2−ε) '
1.7977× 10308

5. The minimal positive normal MN (denoted as realmin) r = 2−1022 '
2.2251× 10−308

6. The minimal positive subnormal MN η = 2−1075 ' 2.4703× 10−324

2. Another View on DPBA

2.1. Normal machine numbers

The normal machine numbers (NMN) from M+ are binary fractions
of the form

µ(m,n) := 2m(1 + nε) = 2m−52(252 + n) (1)

where m ∈ Z(−1022, 1023) and n ∈ Z(0, N − 1). The quantity ε is called
machine epsilon of DPBA and is denoted in MATLAB R© as eps. It has the
property that the quantities µ = µ(m,n) and

µ+ := µ(m,n+ 1) = µ(m,n) + 2mε, n ∈ Z(0, N − 2) (2)

32

Anniversary International Scientific Conference REMIA’2021

are two consecutive machine numbers, such as µ(0, 0) = 1 and µ(0, 1) =
1 + ε. The set of NMN is denoted as Mnor. If we consider µ(m,n) as
an expression for any m,n ∈ Z then for n = N we have µ(m,N) =
µ(m+1, 0). Furthermore, we denote by µ− = µ(m,n−1) = µ(m,n)−2mε,
n ∈ Z(1, N − 1) the machine number to the left of µ.

Usually NMN are written in binary positional form

µ(m,n) = 2m (1 + bin(b1, b2, . . . , b52)) , bk ∈ {0, 1} (3)

where bin(b1, b2, . . . , b52) :=
52∑
k=1

bk2
−k ∈ [0, 1− ε].

The rounding unit of DPBA is the quantity ρ = µ(−53, 0) = 2−53 '
1.1102 × 10−16. We have ρ−1 = 253 = 9, 007, 199, 254, 740, 992 ' 9.0072 ×
1015. Based on the above definitions, we see that µ(N, n) = N + n, n ∈
Z(0, N − 1). In particular 2N − 1, 2N and 2N + 2 are three consecutive
NMN, while 2N + 1 = 253 + 1 is not a MN and is rounded to 2N .

The normal range N = [r, R] ⊂ R+ for DPBA consists of the pos-
itive real numbers between the machine numbers r := µ(−1022, 0) =
2−1022 ' 2.2251 × 10−308 ∈ M, denoted in MATLAB R© as realmin, and
R := µ(1023, N − 1) = 21023(2 − ε) ' 1.7977 × 10308 ∈ M, denoted in
MATLAB R© as realmax. Note that 21024 /∈M. The MN lying in N are said
to be normal and the set of these numbers is denoted as Mnor = M∪N ⊂M.

2.2. Subnormal machine numbers

Positive MN between the quantities r and ω := ε r = 2−1074 '
4.9407×10−324 ∈M are called subnormal [2]. The zero is a machine number
which is usually excluded from the set of subnormal numbers. Neverthe-
less we shall treat 0 as a subnormal number. Therefore the non-negative
subnormal MN (SbMN) in this paper are

sn = nω, n ∈ Z(0, N − 1) (4)

and the set Msub ⊂ M of SbMN has card(Msub) = N elements. We have
M = Mnor ∪Msub and Mnor ∩Msub = ∅.

Real numbers which are sufficiently larger than R are rounded in
DPBA to the symbol Inf which is the machine analogue of infinity. Positive
numbers x which are sufficiently smaller than s1 = ω are rounded to s0 = 0.

33

October 22–24, 2021, Plovdiv, Bulgaria

3. Rounding Errors in the Normal Range

3.1. Rounding function

Let x ∈ Jm := [2m, 2m+1) ⊂ N, m ∈ Z(−1022, 1023). The interval Jm
contains N machine numbers 2m(1 + nε), n ∈ Z(0, N − 1). Thus there are
2046 = 1023 − (−1022) + 1 intervals Jm, and card(Mnor) := 2046 × N '
9.2144×1018 normal machine numbers in M+. Since according to (4) there
are N subnormal non-negative numbers, the total number of elements of
M+ is card(M+) = 2047×N ' 9.2189× 1018.

Since we deal with relative rounding errors then without loss of gener-
ality we consider only the interval J0 which contains the machine numbers
xn := 1 + nε ∈ J0, n ∈ Z(0, N − 1).

Denote by flo(x) ∈M the rounded value of x 6= 0, and let

err(x) =
|flo(x)− x|

x
(5)

be the relative error in rounding x to the nearest machine number flo(x).
For x ∈ J (a, b), where r ≤ a < b ≤ R, the maximal rounding error for
DPBA obeying the IEEE standard satisfies the upper bound

sup{err(x) : x ∈ J (a, b)} < ρ (6)

For particular values of a and b, however, the left-hand side of (6) may be
considerably smaller than ρ.

The rounded value flo(x) of x may also be written as

flo(x) = x+ ∆(x) = x(1 + δ(x)), |δ(x)| < ρ

For moderate values of x ∈ R the absolute signed rounding error ∆(x) =
xδ(x) may be found by the MATLAB R© command >> sym(x,’e’) in the
form ∆(x) = eps×E(x), where E(x) is a rational fraction. For example, for
x = 1.1 we have >> sym(1.1,’e’) = 11/10 + 2*eps/5. Thus E(1.1) =
2/5 and δ(1.1) = (8/11)ρ ' 0.7273ρ.

The numbers xn, and only they, are rounded exactly, i.e. flo(xn) = xn
and err(xn) = 0. More precisely, rounding is performed according to the
formulas

flo(x) =


1 x0 = 1 ≤ x ≤ x0 + ρ
x2p−1 x2p−1 − ρ < x < x2p−1 + ρ
x2p x2p − ρ ≤ x ≤ x2p + ρ
2 xN−1 + ρ = 2− ρ ≤ x < 2

(7)

34

Anniversary International Scientific Conference REMIA’2021

where p ∈ Z(1, N/2−1) = Z(1, 251−1). Note that numbers x ∈ [2−ρ, 2) ⊂
J0 are rounded to 2 /∈ J0.

For each p denote

R2p−1 = (x2p−1 − ρ, x2p−1 + ρ), R2p = [x2p − ρ, x2p + ρ] (8)

The intervals R2p−1, R2p ⊂ [r, R] are sets of attraction of the points x2p−1
and x2p, respectively, since numbers x ∈ Rq are rounded to xq.

Let xn and xn+1 be two consecutive MN and set

ξn =
xn + xn+1

2
= 1 + (2n+ 1)ρ /∈M (9)

Consider the restriction errn of the function err on the interval [xn, xn+1].
Here flo(x) is either xn or xn+1, see (7), and the graph of the function
errn consists of two hyperbolas 1 − xn/x, xn ≤ x ≤ ξn and xn+1/x − 1,
ξn < x ≤ xn+1. Hence the function errn has maximum

en := errn(ξn) =
ρ

ξn
=

ρ

1 + (2n+ 1)ρ
=

1

2n+ 2N + 1
(10)

The variable en decreases in n. In particular en is maximal for n = 0,

e0 = err(1 + ρ) =
ρ

1 + ρ
< ρ (11)

and minimal for n = N − 1,

eN−1 = err(2− ρ) =
ρ

2− ρ
=
ρ

2
+ O(ρ2) (12)

The relations (7) define an increasing step function flo: N→M with
jumps of magnitude 2ρ at the points x = yn. The graph of the continuous
piece-wise differentiable function err : N→ N resembles a saw.

In view of (11), the analysis of rounding errors is usually based [1]
on the estimate

err(x) ≤ ρ

1 + ρ
< ρ = 2−53

which is almost achievable near the left end of the interval [1, 2). However,
close to the right end of this interval the estimate for err is rather of the
type

err(x) <
ρ

2
= 2−54

see (12). Moreover, statistically the behavior of the relative rounding errors
may not correspond to the upper bounds en. Hence it is useful to introduce

35

October 22–24, 2021, Plovdiv, Bulgaria

estimates for average rather than for maximal errors. Such estimates are
inequalities of the form

err(x) ≤ E = Cρ+ O(ρ2) (13)

for certain positive constants C < 1. Two average bounds that we consider
are

Emax =
1

N

N−1∑
n=0

en (14)

and

Eint =

∫ 2

1

err(x) dx. (15)

In what follows we compute the constants C in (13) for the average
rounding bounds (14) and (15). In particular we show that C = Cmax =
log(2) ' 0.6931 for the bound (14) and C = Cint = log(2)/2 ' 0.3466 for
the bound (15).

3.2. Average maximal error

Consider first the average bound (14), where the local maximal errors
en are defined in (10). We have

Emax =
E

N
= 2ρE, E =

N−1∑
n=0

en

It may be shown that the following relations hold

E =
N−1∑
n=0

1

2n+ 2N + 1
=

2N∑
k=N+1

1

2k − 1
=

log(2)

2
+ O(ρ2)

Hence 2ρE < ρ log(2) + O(ρ3) and

Emax = Cmax ρ+ O(ρ3), Cmax = log(2) ' 0.6931 (16)

3.3. Average integral error

The average integral rounding error for a ≤ x ≤ b is defined as

Eint(a, b) =
1

b− a

∫ b

a

err(x) dx

36

Anniversary International Scientific Conference REMIA’2021

In our case a = 1, b = 2 and hence

Eint = Eint(1, 2) =

∫ 2

1

err(x) dx =
N−1∑
n=0

En

where

En =

∫ xn+1

xn

err(x) dx, n ∈ Z(0, N − 1) (17)

and xN := 2. Furthermore we have En = Fn +Gn, where

Fn =

∫ ξn

xn

x− xn
x

dx = ρ− xn log

(
ξn
xn

)
and

Gn =

∫ xn+1

ξn

xn+1 − x
x

dx = xn+1 log

(
xn+1

ξn

)
− ρ

Setting ρn = ρ/xn we obtain

Fn +Gn

xn
= (1 + 2ρn) log (1 + 2ρn))− 2(1 + ρn) log(1 + ρn)

= ρ2n − ρ3n + O
(
ρ4n
)

=
ρ2

x2n
− ρ3

x3n
+ O

(
ρ4
)
.

Hence for small ρ we have the estimate (Fn +Gn)/ρ < ρn + O
(
ρ3
)

and

1

ρ

N−1∑
n=0

(Fn +Gn) <
N−1∑
n=0

ρn + O(ρ2)

Next we obtain
N−1∑
n=0

ρn <
1

2
log

(
2N − 1

N − 1

)
+

1

4(2N − 1)
− 1

4N

=
1

2
log

(
2− 2ρ

1− 2ρ

)
− ρ− 2ρ2

4(1− ρ)
=

log(2)

2
+
ρ

4
+ O(ρ2)

Hence

Eint ≤ Cintρ+ O(ρ2), Cint :=
log(2)

2
' 0.3466. (18)

37

October 22–24, 2021, Plovdiv, Bulgaria

4. Rounding Errors in the Subnormal Range

4.1. Rounding function

A real non-negative number x < r is rounded by the rounding func-
tion flo∗ : [0, r) → [0, r) to the closest sub-normal MN sn = nω of the
form (4) as follows:

flo∗(x) =


s0 = 0, 0 ≤ x ≤ η
s2k−1, s2k−1 − η < x < s2k−1 + η
s2k, s2k − η ≤ x ≤ s2k + η
r, r − η < x < r

(19)

Here k ∈ Z(1, N/2), the value of ω = ε r is 2−1074 and η = ω/2. Since
numbers from the interval M0 := [0, η] ⊂ R+, η = 2−1075 ' 2.4703×10−324,
are rounded to 0 we shall refer to M0 as the machine zero.

It follows from (19) that the maximum δn of the relative rounding
error

err∗(x) :=

∣∣∣∣flo∗(x)− x
x

∣∣∣∣ (20)

for x ∈ (sn, sn+1) is achieved for x = σn := (sn + sn+1)/2. We have

δn = err∗(σn) =
1

2n+ 1
, n ∈ Z(0, N − 1) (21)

4.2. Average maximal error

It follows from (21) that the maximal relative error δn decreases from
δ0 = 1 to δN−1 = ρ/(1− ρ). The mean of the maximal errors is

E∗max =
1

N

N−1∑
n=0

δn =
1

N

N∑
k=1

1

2k − 1

or

E∗max = ρ
(
2 log(2) + γ + log(N) + O

(
N−2

))
= C(ρ)ρ+ O(ρ3)

where

C(ρ) = C1 − log(ρ), C1 := log(2) + γ ' 1.2704 (22)

We see that the mean term C(ρ)ρ in the upper bound for E∗max,
defined by (22) and (22), is not a linear function of ρ. This is a major
difference in the properties of the rounding function in the subnormal and

38

Anniversary International Scientific Conference REMIA’2021

the normal ranges of DPBA. We stress finally that for DPBA with ρ = 2−53

we have C(ρ) ≤ 38.0072 and hence E∗max ≤ 38.01ρ.

4.3. Average integral error

The average integral rounding error for numbers from the subnormal
range [0, r) of the DPBA is

E∗int :=
1

r

∫ r

0

err∗(x)dx =
N−1∑
n=0

E∗n (23)

Here

E∗n :=
1

r

∫ sn+1

sn

err∗(x)dx = F ∗n +G∗n

and

F ∗n =
1

r

∫ σn

sn

(
1− sn

x

)
dx = ρ− 2ρn log

(
1 +

1

2n

)
G∗n =

1

r

∫ sn+1

σn

(sn+1

x
− 1
)

dx = −ρ+ 2ρ(n+ 1) log

(
1 +

1

1 + 2n

)
Therefore E∗n = 2ρψ(n) and

E∗int = 2ρΦ(ρ), Φ(ρ) :=
N−1∑
n=0

ψ(n)

where

ψ(n) := (n+ 1) log

(
1 +

1

1 + 2n

)
− n log

(
1 +

1

2n

)
It may be shown that ψ(n) < 1/(1 + 2n) and

Φ(ρ) <
N∑
k=1

1

2k − 1
<
C(ρ)

2

Hence

E∗int ≤ C(ρ)ρ+ O(ρ3) (24)

where the expression C(ρ) is determined by (22). We see that the estimates
for the maximal average error and the integral average error for rounding
of numbers from the subnormal range of DPBA coincide!

39

October 22–24, 2021, Plovdiv, Bulgaria

5. Rounding Errors in the Supnormal Range

The number R = 21023(2 − ε) (written as realmax in MATLAB R©)
is the maximal machine number in DPBA, or the maximal element of M.
It may be computed as >> 2^1023*(2-eps). The previous relative to R
machine number is R− = 21023(2 − 2ε), while the quantity 21024 is not a
machine number and is rounded to Inf. Hence if we try to compute R as
>> 2^1024-2^971 the answer shall be Inf.

The quantity S = 2969(2− ε) ∈ N has the following interesting prop-
erty. The number R + S is rounded to R while R + S+ is rounded to Inf,
where S+ = µ(970, 0) is the machine number right next to S. Thus the
command >> realmax+2^969*(2-eps) gives realmax, while the command
>> realmax+2^970 returns Inf.

As a summary, real numbers x ∈ (R,R+S] are rounded to flo∗∗(x) =
R with a relative error∣∣∣∣x− flo∗∗(x)

x

∣∣∣∣ ≤ R + S −R
R + S

=
S

R + S
=
ρ

2
(25)

In turn, the average integral rounding error in this interval is

1

S

∫ R+S

R

x−R
x

dx =
1

S

(
S −R log

(
1 +

S

R

))
' ρ

4
(26)

We shall refer to the interval (R,R+S] ⊂ R+ as the supnormal range
for DPBA. Finally, real numbers x > R + S are rounded to Inf and the
relative error in this case is infinite. The interval (R,+∞) ⊂ R+ is said to
be the infinity range for DPBA.

6. Summary of Rounding Errors

The above results may be summarized as follows. For this particular
standard of machine arithmetic, namely DPBA, a rounding function flo :
R → M+ ∪ {Inf} is defined with the following properties, illustrated for
definiteness in the case of non-negative numbers in the next table.

40

Anniversary International Scientific Conference REMIA’2021

Range Maximal error Integral error Remarks

Machine zero
[0, η] 1 1 Rounding to 0

Subnormal range C(ρ) = C1 − log(ρ)
(η, r) C(ρ)ρ C(ρ)ρ C1 = log(2) + γ ' 1.2704

Normal range
[r, R] Cmax ρ 0.5Cmax ρ Cmax = log(2) ' 0.6931

Supnormal range
(R,R + S] 0.5 ρ 0.25 ρ Rounding to realmax

Infinity range
(R + S,∞) ∞ ∞ Rounding to Inf

Table 1. Average relative rounding errors

7. Large Error Computations

The exact value of a certain number x ∈ R and its rounded value
flo(x) ∈ M in DPBA are different unless x ∈ M. Moreover, the rounding
rule flo : R → M may not be a function in the standard mathematical
sense. In particular flo(x) depends on two informal factors as follows.

1. The way the argument x is written; e.g. for x = 1 + eps ∈ M we
have flo(1 + eps) = 1 + eps but flo(1 + eps/2 + eps/2) = 1.

2. The properties of the software and hardware realization of the
particular DPBA obeying the IEEE Standard for floating-point
arithmetic.

These effects and the rounding rules themselves may cause unexpectedly
large computational errors without any warning to the user. We recall that
the calculations in DPBA are in the following order: function evaluation;
calculation in brackets; multiplication (division) and addition (subtraction)
from left to right.

7.1. Calculations with large numbers

Interesting rounding effects may be observed for numbers far from
the boundaries of the normal range of DPBA, e.g. for large numbers that
are close to realmax, R = 21023(2 − eps) = 21024 − 2971. For example, the
quantity A = R + 2970 = R + 2969 + 2969 = 21024 − 2970 computed by the
MATLAB R© command >> realmax+2^970 gives Inf. At the same time if
we compute A by the command >> realmax+2^969+2^969 the answer is
realmax because realmax+2^969 is rounded twice to realmax. Hence we
shall get realmax if we add any number of quantities 2^969 to realmax. A

41

October 22–24, 2021, Plovdiv, Bulgaria

counterpart of the latter result is the sum of 1 and any number of quantities
eps/2. The result may be arbitrarily large but the computed result is equal
to 1 due to the fact that 1+eps/2 is repeatedly rounded to 1. The same is
valid for the sum of 253 and any numbers of ones.

Also, 21024 is set to Inf in DPBA and the same is valid for quantities
written in the form 2^1024-D for any D ∈ N. In particular, the exact
value of realmax is 21024 − 2971 but, written in this form in DPBA, it will
be set to Inf. To input the correct value of realmax in DPBA (except as
realmax) we may write it as >> 2^(1024-m)*(2^m-2^(m-53)) for any m ∈
Z(1, 1023). Another brutal example is the calculation 21024 − 21023 − 21023.
The result is 0 but written in this form in DPBA it will be interpreted as
Inf and we have the somehow surprising result Inf = 0. In turn, the ratio
21024/21024 and the difference 21024− 21024 are interpreted in DPBA as NaN
(from Not a Number) instead of 1 and 0, respectively.

7.2. Calculations with moderate numbers

Very often simple computations with quite moderate numbers may
be contaminated with large rounding errors which appear without any
warning. Consider first an example involving a positive integer parameter
n. For n = 1 the relative error may reach 1, or 100%, while for n > 1 this
error is practically unlimited! This example is based on the expression

Fn(x) = x−n

(
(1 + x)n −

n−1∑
k=0

(
n

k

)
xk

)
, x 6= 0

which is equal to 1. However, the computed value flo(Fn(x)) of Fn(x)
exposes strange behavior for values of x far from the boundaries of the
normal range of DPBA. This behavior is in full accordance with the arith-
metic rules of DPBA.

Let us start with the simplest expression F1(x) = (1 + x − 1)/x,
x 6= 0. For x = ρ the computed value flo(F1(ρ)) is 0 and for x = ρ(1 + 2ρ)
the computed value flo(F1(ρ(1 + 2ρ))) is 2/(1 + 2ρ) ' 2 instead of 1.
In both cases the relative error is 100%. The expression F1(x) may be
coded as >> x=-3*eps:eps/1000:3*eps;F1=(1+x-1)./x; and further on
plotted by the command >>plot(x,F1,’b’,x,ones(1,length(x),’r’).
We should have F1(x) = 1 but in fact flo(F1(x)) varies from 0 to 2 with

42

Anniversary International Scientific Conference REMIA’2021

100% relative error. More precisely, for x ≥ 0 and k = 0, 1, 2, . . . , we have

flo(F1(x)) =

 0 0 ≤ x ≤ ρ
(4 + 4k)ρ x−1 (3 + 4k)ρ ≤ x ≤ (5 + 4k)ρ
(2 + 4k)ρ x−1 (1 + 4k)ρ < x < (3 + 4k)ρ

Similar expressions are valid for x < 0.

Weird behavior demonstrates the expression flo(Fn(x)) for n ≥ 2
since its values may differ drastically from the exact value Fn(x) = 1. In
particular we have the awful result flo(Fn(x)) = −n/x, −ρ/2 ≤ x ≤ ρ,
x 6= 0, with unlimited relative error. For 0 < x ≤ ρ the sign of the
computed result is wrong but this cannot make things worse.

For example flo(F2(ρ)) = −2/ρ ' −1.8014×1016 instead of the exact
answer F2(ρ) = 1. More generally, for moderate values of m = 1, 2, . . . we
have flo(F2(2mρ)) = 0 and

flo(F2(4m− 1)ρ) ' 2

(2m− 1)2ρ
, flo(F2(4m− 3)ρ) ' −2

(2m− 1)2ρ

These astonishing errors are due neither to the computer system used nor to
possible hardware defects. The are completely in accordance with the rules
governing the DPBA. In addition, the computed values of Fn(x) strongly
depend on the order of summation in the corresponding formula.

In particular, for n = 2 the three expressions y1 = ((1 + x)2 − 1 −
2x)/x2, y2 = ((1 + x)2 − 2x− 1)/x2 and y3 = ((1 + x)2 − (1 + 2x))/x2 for
computing F2(x) are equivalent. However, in DPBA they produce quite
different results for certain values of x due to violation of the associative
rule for addition. Some numerical results are presented at the table below.

x y1 y2 y3
226 × ε 1 1 1

225.5 × ε 2.751 2.000 2.000
225 × ε 0 0 0
ε/2 −1.801× 1016 −1.801× 1016 −1.801× 1016

ε/3 −2.702× 1016 −2.027× 1016 −4.053× 1016

ε/4 −3.603× 1016 −3.603× 1016 0
ε/5 −4.504× 1016 −5.630× 1016 0
ε/8 −7.206× 1016 0 0

2−537 −8.998× 10161 0 0
2−538 −Inf NaN NaN

Table 2. Unlimited chaotic errors

43

October 22–24, 2021, Plovdiv, Bulgaria

In order to avoid such catastrophic computations, attempts to “cheat”
the DPBA may sometimes be applied by preliminary symbolic simplifica-
tion of the corresponding formulas. For example, the simplification of Fn(x)
as a symbolic expression directly gives the correct answer Fn(x) = 1. If
however similar expressions arise in the execution of complicated compu-
tational algorithms this may not be possible.

Consider next the following numerical test. Choose an integer p > 1
such that p + 1 is not an integer power of 2 and let V be a p–vector with
rational elements Vk = 1+kh between 1 and 2, i.e. V = [1+h, 1+2h, . . . , 1+
ph], where h = 1/(p+1). The vector V may be computed by the commands
>> h=1/(p+1);V=1+h:h:2-h; The aim of the numerical test is to estimate
the mean value U(p) := 1

p

∑p
k=1 Uk(p) of the quantities Uk(p) = |flo(Vk) −

Vk|/(Vkρ). The computed values Up of U(p) are expected to be close to the
coefficient C in the bound Cρ for the average rounding errors in the normal
range of DPBA. The experiment is performed by the MATLAB R© command
>>Up=double(mean(abs(sym(V,’e’)./V-ones(1,length(p))))*2/eps)

We recall that the MATLAB R© function sym(a,’e’) computes the
rounded value flo(a) of the array a plus an approximation of the form
eps × A of the absolute rounding error, where A is an array of the type
of a with rational elements of order 1. For instance, for the 2-vector
a = [1 + 1/3, 1 + 2/3] the command >> sym([1+1/3,1+2/3],’e’) gives
[4/3-eps/3,5/3-2*eps/3], i.e. in this case A = [−1/3,−2/3]. The result
is different if we use the command >> sym([4/3,5/3],’e’) which gives
[4/3-eps/3,eps/3+5/3] with A = [−1/3, 1/3].

The results of this numerical experiment are shown at the next two
tables. We stress that if p+ 1 was an integer degree of 2 then the rounding
errors would be zero and U(p) = 0. The same is true if we choose V by
a quasi-random number generator, e.g. V=1+rand(1,p) since in this case
the elements of V are machine numbers.

p 10 20 30 40 50 60 70 80 90 100

U(p) .503 .408 .387 .392 .507 .377 .371 .418 .375 .361

Table 3. Coefficients for relative rounding errors

p 9 99 999 999
h 0.1 0.01 0.001 0.0001

U(p) 0.613 0.363 0.672 0.360

Table 4. More coefficients for relative rounding errors

44

Anniversary International Scientific Conference REMIA’2021

7.3. Automatic voting calculations

Consider the allocation of M seats among n parties P1, P2, . . . , Pn
with votes v1, v2, . . . , vn. According to the method of Hamilton fractional
seats mk = vkM/V are calculated, where V = v1 + v2 + · · · + vn. Denote
mk = nk + rk, where nk = fix(mk) is the integer part of mk and rk ∈ [0, 1)
is the remainder mk. Initially each party Pk obtains nk seats. If there are p
seats left then p parties with largest remainders obtains one additional seat.
If this procedure cannot be realized because of equal remainders then a tie
is carried out. In bi-proportional systems as in Bulgaria several ties may
be necessary and the calculations may be done automatically. Moreover,
possible ties may be done before the election results are known by ordering
the parties preliminary.

Surprisingly, rounding errors with relative accuracy ρ ' 10−16 may
contaminate voting calculations although the number V does not exceed
107. The problem is in the MATLAB command >>[a,b] = max(u), where
a is the maximum element of the vector u and b is its index. In case of equal
elements b is the minimal index. However, when the vector u is computed
in DPBA, elements which should be equal in fact differ within quantities
of order ρ. For example, the vector [4/3 − 1, 1/3] has equal elements 1/3
and the correct value of the index b is 1. At the same time the command
>> [a,b] = max([4/3-1,1/3]) gives a = 0.3333, b = 2. The reason is
that the first element 4/3− 1 is rounded in DPBA as 1/3− eps/3 which is
less then the rounded value 1/3−eps/12 of the second element. As a result
MATLAB R© “decides” that the index of the maximal element is 2. This
leads to wrong determination of the index b and to wrong allocation of seats
among political parties. This may have dangerous political consequences.

Such cases illustrate the influence of rounding on voting calculations.
They took place in experiments with the software for voting calculations
in Bulgaria. The solution is to use integer remainders Rk = V rk = Mvk
instead of fractional remainders rk.

7.4. Evaluation of Lipschitz functions

Let f : Rn → Rn be a vector function of vector argument x ∈ Rn.
The function evaluation y = f(x) 6= 0 for large arguments x may be
accompanied by large errors. Indeed let x∗ be the rounded value of the
argument x such that ‖x∗ − x‖ ≤ Γ‖x‖ρ. where the constant Γ depends

45

October 22–24, 2021, Plovdiv, Bulgaria

on n and on the norm used. For the Euclidean norm we have Γ =
√
n. Let

the function f be Lipschitz continuous with constant Λ > 0, i.e.

‖f(x1)− f(x2)‖ ≤ Λ‖x1 − x2‖
Even if the machine calculation y∗ = f(x∗) is done exactly, we have

‖y∗ − y‖
‖y‖

≤ Lρ, L =
ΛΓ‖x‖
‖y‖

(27)

see [1]. The constant L is the relative condition number of the computa-
tional problem y = f(x). This constant will be large if Λ and/or ‖x‖ are
large and if ‖y‖ is small (note that Γ is usually not large).

The computational problem is well conditioned in DPBA if Lρ� 1.
In this case one may expect about − log10(Lρ) true decimal digits in the
computed solution. On the contrary, when Lρ is close to 1 the problem is
badly conditioned and there may be no true digits in the computed solution.

This leads to the next important rule in numerical computations. If
the initial data x and some of the intermediate computational results are
large and the result y is small then large relative errors in the computed
result are to be expected. The famous cancellation arguments in the analysis
of the subtraction of close numbers are particular cases of this rule.

As an example consider the computation of the quantities αm =
sin (π (0.5 + 2m)) and βm = cos (π2m) for positive integers m. The quan-
tities αm, βm should be equal to 1 but they are not. Some results are
presented at the next table.

m 48 49 50 51 52 53 54

sm 0.9998 0.9903 0.9783 0.9883 −0.5240 −0.8926 −0.8049
cm 0.9994 0.9976 0.9905 0.9622 0.8517 0.4509 −0.5934

Table 5. Function evaluation for large arguments

7.5. Evaluation of Hölder functions

Consider the function evaluation y = f(x) 6= 0, where the function f
is Hölder continuous with constant Λ > 0 and exponent α ∈ (0, 1), i.e.

‖f(x1)− f(x2)‖ ≤ Λ‖x1 − x2‖α

The machine computation of y may be accomplished with large errors
especially when α is close to 0. Such cases arise in e.g. the computation
of multiple zeros ξ of a smooth function F , where F (ξ) = F ′(ξ) = · · · =

46

Anniversary International Scientific Conference REMIA’2021

Fm−1(ξ) = 0 (m ≥ 2) and α = 1/m. For Hölder continuous functions the
analogue of (27) is

‖y∗ − y‖
‖y‖

≤ Hρα, H =
ΛΓα‖x‖α

‖y‖
(28)

To obtain meaningful numerical results it is necessary to have Hρα < 1.
But even in this case the computational errors may be relatively large since
ρα may not be small enough. For example, if α = 1/4 then ρα ' 10−4.

To illustrate the above concepts consider the complex polynomial of
degree n ≥ 3. Note that for n = 2 there are specialized algorithms for
finding the roots with high accuracy.

F (z) = zn + c1z
n−1 + · · ·+ cn = (z − r1)(z − r2) · · · (z − rn) (29)

Set c = [c1; c2; . . . ; cn] and r = [r1; r2; . . . ; rn]. The vectors c and r are
connected by the Viéte map Σ : Cn → Cn, namely c = Σ(r), where ck =
Σk(r) = (−1)kσk(r1, r2, . . . , rn), k ∈ Z(1, n). Here σk is the k-th symmetric
function of n variables. The function Σ is polynomial and hence Lipschitz
continuous. The inverse function f = Σ−1 is of complicated algebraic
structure, implicit for n ≥ 5 and is Hölder continuous of exponents as
small as α = 1/n.

Computational problems arising in solving Hölder problems such
as algebraic equations with multiple roots are considered below. The
MATLAB R© code for solving algebraic equations of type (29) is roots(c0),
where c0 = [1; c1; c2; ...; cn] ∈ Cn+1. It produces a column vector with the
computed roots. The code computes the eigenvalues of the companion
matrix of the polynomial (29) by the QR algorithm.

The polynomial (z − 1)n has zero r1 = 1 of multiplicity n. The
implementation of the code roots for several values of n gives the following
results. For a given n we denote by r∗ the vector of computed roots, by r
the vector of exact roots equal to 1, and

H =
‖r∗ − r‖
‖r‖

ρ−1/n, ρ = 2−53

We have

n 3 4 5 6 7

H 2.1848 2.1153 1.7577 2.1880 1.7852

Table 6. Solving algebraic equations of degree n

47

October 22–24, 2021, Plovdiv, Bulgaria

The relative error in the computed roots is of order 2ρ1/n = 21−53/n

and it may be unacceptable even for small values of the degree n. At the
same time the code roots works with degrees n of order up to several
thousands and this is an important advantage.

Note that together with the code roots we may find the zeros of a
polynomial also by the codes solve and fzero from MATLAB. The latter
two codes are intended for solving general finite equations. They produce
solutions close to the nearest machine numbers.

Below we compare the main advantages and disadvantages of the
codes roots, solve and fzero for solving algebraic equations of degree n.
The code solve(...) is used as double(solve(...)).

Code Advantages Disadvantages

roots Works with n up 5000. Large errors for multiple roots
Relatively fast. even for low multiplicity.

solve Very accurate including Works with n up 500.
for multiple roots. May be slow for large n.

fzero Very accurate and fast. Finds only one root.
May not work properly for
roots of even multiplicity.

Table 7. Comparison of three solvers for algebraic equations

7.6. Subtraction without cancellation

In this section we consider the errors in subtraction of finite binary
fractions of type A × 2B, where A,B ∈ Z and A is either an odd number
or zero. These fractions may or may not be machine numbers. Denote the
set of such fractions as F. Obviously M ⊂ F and the set F is closed under
addition and multiplication. For example, the quantities 1/ρ+ 1 and 1 + ρ
are not machine numbers in DPBA while 1/ρ− 1 and 1− ρ are.

The machine subtraction of binary fractions may be done either ex-
actly or with rounding errors. Usually the subtraction b−a, either approx-
imate or exact, of close numbers a, b is considered as a dangerous operation
due to cancellation of the information coded in the left-most digits of a and
b. At the same time rounding is often neglected as an immediate reason for
loss of accuracy since the machine subtraction of close machine numbers is
done exactly. The key words here are “machine numbers”. If binary frac-
tions are subtracted in DPBA and at least one of them is not a machine

48

Anniversary International Scientific Conference REMIA’2021

number then the relative error of the subtraction may be unlimited. The
next example illustrates this phenomenon.

Setting x∗ = flo(x) ∈ M+ for x ∈ N, the machine subtraction of
a, b ∈ N ∩ F (a < b) is done as flo(b − a) = (b∗ − a∗)∗. Let a = 1 + ρ and
b = 1+ρ(1+ρ(1+2ρ)) = 1+ρ+ρ2+2ρ3. The exact result is b−a = ρ2(1+2ρ).
Next we obtain a∗ = 1, b∗ = 1 + 2ρ and flo(b − a) = b∗ − a∗ = 2ρ. Thus
flo(b−a) = β(ρ)(b−a), where β(ρ) = 2/ρ+O(1). The computed difference
is 1.8014×1016 times larger than the exact difference! We stress again that
this is not a result of cancellation of left-most digits but of “pure” rounding.

A lighter version of this phenomenon is the subtraction of close num-
bers a, b from the set of attraction of a given machine number. Here a∗ = b∗

and flo(b− a) = 0 with 100% relative error.

Bibliography

[1] N. Higham, M. Konstantinov, V. Mehrmann, P. Petkov, The sensitiv-
ity of computational control problems, IEEE Control Systems Maga-
zine, Vol. 24, 2004, 28–43, doi:10.1109/MCS.2004.1272744

[2] IEEE, 754–2019 IEEE Standard for Floating-Point Arithmetic, 2019,
standards.ieee.org/standard/754-2019.html

[3] MathWorks, MATLAB, Version R2019a, MathWorks Inc, 2019, Na-
tick, Massachusetts, mathworks.com/products/matlab

Mihail Konstantinov1,∗, Petko Petkov2

1 University of Architecture, Civil Engineering and Geodesy, 1421 Sofia,
2 Technical University of Sofia, 1157 Sofia, php@tu-sofia.bg
∗ Corresponding author: misho.konstantinov@gmail.com

49

