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Abstract. Let G be a metacyclic group and K be such a field that the group
algebra KG is semisimple. Several authors have examined the algebra KG
and have obtained important results in two particular cases for the field K:
when K = Q is the field of rational numbers and when K is finite field
with characteristic, coprime to the order of G. The contribution of our
work is in the determination up to isomorphism of the simple components
of the algebra KG where the aforementioned limitations over the field K
have been overcome. In the last section we give illustrative examples of a
specific group G and field K.
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1. Introduction

Let K be a field and G be such a finite group that the group algebra
KG is semisimple. In order to describe the structure of the algebra KG
it is sufficient to find one complete system of minimal central orthogonal
idempotents of KG and the Wedderburn decomposition of KG [8, Theo-
rem 1.4.4]. (The above is true because every such idempotent e generate a
minimal two-sided ideal KGe of the algebra KG, which is called a simple
component of KG and is isomorphic to direct summand in the Wedderburn
decomposition of the group algebra.) This problem is of interest due to its
applications in both pure and applied algebra.

In the last few years much researches has been done to describe the
structure of the semisimple group algebra KG of the finite group G in two
important special cases: when K = Q is the field of rational numbers and
when K is finite field with characteristic, coprime to the order of G.

In the special case when K = Q, Olivieri, del Rio and Simon gives
a description of the primitive central idempotents and the correspond-
ing simple components of the semisimple group algebra QG, as well as
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the Wedderburn decomposition of the algebra QG, when G is abelian-by-
supersolvable group [9]. In [10] they examine when two simple components
of the algebra QG of a metacyclic group G are isomorphic. These results
have been used by Bakshi and Maheshwary, when G is a normally mono-
mial group [4], as well as by Bakshi and Kaur [3], when G is a group
such that all the subgroups and quotient groups of G satisfy the following
property: either it is abelian or it contains a non-central abelian normal
subgroup.

In the special case, when K is finite field with characteristic, coprime
to the order of the group G, Broche and del Rio give a description of the
primitive central idempotents and structure of the corresponding simple
components of the semisimple group algebra KG, when G is an abelian-
by-supersolvable group [5]. Bakshi, Gupta and Passi specify the structure
of the algebra KG, when G is a metacyclic group [1] and when G is a
metabelian group [2].

The results shown for the semisimple group algebra KG of a meta-
cyclic group G were obtained by the different authors with significant re-
strictions for the field K. Namely, when K = Q is the field of rational
numbers or when K is a finite field with characteristic, coprime to the or-
der of G. The additional value of this work compared to those described
above is that we overcome the aforementioned restrictions for the field K.
We find the simple components of the algebra KG in the most general case,
i.e. when K is an arbitrary field (it sufficient for KG to be a semisimple
algebra).

This article is a continuation of our previous work [6], in which we
solve the problem of finding a complete system of minimal central orthog-
onal idempotents of the semisimple group algebra KG in the most general
case possible, i.e. when K is an arbitrary field [6, Theorem 8]. In Section
2 we get some preliminary results for the algebra KG on the condition
that K is a field of decomposition of the metacyclic group G. We find the
dimension of the ideal KGe as K-algebra (Theorem 2.2) and describe the
Wedderburn decomposition of the algebra KG (Theorem 2.3). In Section
3, without imposing limitations over the field K, we determine up to iso-
mophism the simple components of the algebra KG (Theorem 3.1). Our
study concludes with Section 4 where we illustrate the achieved results
with specific examples.
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2. Finding the simple components and determining of the Wed-
derburn decomposition of the semisimple group algebra KG,
when K is a field of decomposition of the metacyclic group G

Let G be a finite metacyclic group, determined by the conditions [7,
Theorem 9.4.3]:

G =
〈
a, b

∣∣ an = 1, bm = 1, a−1ba = br
〉
,

where (r (r − 1) ,m) = 1 and rn ≡ 1 (modm) .
(1)

Bearing in mind the conditions (1), in this article we will permanently
use the notation introduced in [6].

Let K be a field of decomposition of the metacyclic group G with
determining conditions (1). Then according to [6, Theorem 6] the minimal
central orthogonal idempotents of the semisimple group algebra KG for a
fixed divisor d of m are edij = αdiBdj, where

αdi =
k

n

l−1∑
s=0

(
ak

εi

)s
for i = 0, 1, . . . , l − 1,

Bdj =
k−1∑
µ=0

βdjrµ =
k−1∑
µ=0

(
1

m

m−1∑
s1=0

(
b

ηjrµ

)s1)
for j ∈ J.

(2)

Let e = k
mn

(
l−1∑
s=0

aks

εs

)(
k−1∑
µ=0

m−1∑
s1=0

bs1

ηs1 r
µ

)
be an arbitrary idempotent

of the semisimple group algebra KG. If α = k
n

(
l−1∑
s=0

aks

εs

)
and βrµ =

1
m

(
m−1∑
s1=0

bs1

ηs1r
µ

)
, then e =

k−1∑
µ=0

eµ, where eµ = αβrµ.

Theorem 2.1. The element be from the ideal KGe of the semisimple group

algebra KG is a root of the polynomial f(x) =
k−1∏
µ=0

(
x− ηrµe

)
of degree k.

Proof. First we will prove that the equality beµ = ηr
µ

eµ holds. Indeed, as
α is a central element of the semisimple group algebra KG, then beµ =

α
m

(
m−1∑
s1=0

bs1+1

ηs1r
µ

)
= ηr

µ α
m

m−1∑
s1=0

bs1+1

η(s1+1)rµ = ηr
µ

αβrµ = ηr
µ

eµ. Let us calculate
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f(be):

f(be) =
k−1∏
µ=0

(
b− ηrµ

)
e =

k−1∏
µ=0

(
b− ηrµ

) k−1∑
ν=0

eν =
k−1∑
ν=0

k−1∏
µ=0

(
b− ηrµ

)
eν.

Given µ = ν, from the initially proved equality we get
(
b− ηrµ

)
eµ = 0,

from where it follows f(be) = 0.

Theorem 2.2. The dimension of the ideal KGe as K-algebra is k2.

Proof. From Theorem 2.1 follows that the highest exponent of the element
b which is contained in the ideal KGe of the algebra KG, is k−1. It is easy
to see that the highest exponent of the element a, which is contained in
the ideal KGe, is also k−1. Therefore dimKKGe ≤ k2. So the semisimple
group algebra KG decomposes into a direct sum of ideals of the kind KGe
and each of them has a dimension of at most k2 over the field K. According
to [6, comment after Theorem 7] for a fixed d the number of these ideals

is nφ(d)
k2 , where φ (x) is Euler’s function. Therefore, nm = dimKKG =∑

e
dimKKGe ≤

∑
d/m

k2nφ(d)k2 = n
∑
d/m

φ (d) = nm, i.e. dimKKGe = k2.

Proven in Theorem 2.2 means that the ideal KGe of the semisimple
group algebra KG is isomorphic to the matrix algebra Mk(K) of the k× k
matrices over the field K.

Bearing in mind that for a fixed d the number of the ideals of the

kind KGe is nφ(d)
k2 , we obtain the following:

Theorem 2.3. (Wedderburn decomposition). Let G be a metacyclic group
with determining conditions (1) and K be a field of decomposition of G,
whose characteristic does not divide the order of the group. Then the Wed-
derburn decomposition of the semisimple group algebra KG is

KG ∼=
∑
d/m

⊕nφ (d)

k2
Mk(K).
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3. Finding the simple components of the semisimple group al-
gebra KG of the metacyclic group G, when K is an arbitrary
field

Let K be a field, whose characteristic does not divide the order of the
finite group G. According to the Maschke’s Theorem the group algebra KG
is semisimple [11, §3.6]. Then from the Wedderburn Theorem it follows
that the algebra KG decomposes in a direct sum of minimal two-sided
ideals generated by minimal central orthogonal idempotents of KG [11,
§3.5]. From [7, Theorem 16.5.2 and Lemma 16.5.2] holds:

Theorem 3.1. Let K be a field, whose characteristic does not divide the
order of the finite group G. The ideal KGe of the semisimple group algebra
KG is isomorphic to the matrix algebra Mk(D), where D = e∗1KGe

∗
1 for

some minimal idempotent e∗1 of the ideal KGe of the algebra KG.

4. Examples of finding the simple components and determining
of the Wedderburn decomposition of the semisimple group
algebra KG of the metacyclic group G

Example 4.1. Let G be metacyclic group, generated by the elements a and
b with determining conditions a8 = 1, b15 = 1, a−1ba = b2 and K is a field
of decomposition of the group G, i.e. K contains primitive 8-th root of 1
and primitive 15-th root of 1. We will find the simple components and
determine the Wedderburn decomposition of the semisimple group algebra
KG.

First case. For d = 1, k = 1 the simple components of the algebra
KG are isomorphic to the field K and we get K ⊕K ⊕K ⊕K ⊕K ⊕K ⊕
K ⊕K.

Second case. For d = 3, k = 2 the simple components of KG
are isomorphic to the matrix ring M2 (K) and we get M2 (K)⊕M2 (K)⊕
M2 (K)⊕M2 (K).

Third case. For d = 5, k = 4 the simple components of the algebra
KG are isomorphic to the matrix ring M4 (K) and we get M4 (K)⊕M4 (K).

Fourth case. For d = 15, k = 4 the simple components of the
algebra KG are isomorphic to the matrix ring M4 (K) and we get M4 (K)⊕
M4 (K)⊕M4 (K)⊕M4 (K).

Finally, the Wedderburn decomposition of the semisimple group al-
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gebra KG of the metacyclic group G is:

KG ∼=K ⊕K ⊕K ⊕K ⊕K ⊕K ⊕K ⊕K⊕
M2 (K)⊕M2 (K)⊕M2 (K)⊕M2 (K)⊕
M4 (K)⊕M4 (K)⊕M4 (K)⊕M4 (K)⊕M4 (K)⊕M4 (K) .

Example 4.2. We consider the semisimple group algebra QG of the meta-
cyclic group G of Example 4.1. Here the field Q of the rational numbers is
not a field of decomposition of the group G, because it does not contain a
primitive 8th root of 1 and a primitive 15th root of 1.

First case. For d = 1, k = 1 the minimal central orthogonal idem-
potents of the algebra QG are e1j1 = α′1jB11 for j = 0, 1, 2, 3, where

α′10 =
1

8
(1 + a)(1 + a2)(1 + a4),

α′11 =
1

2
(1− a)(1 + a)(1 + a2),

α′12 =
1

4
(1− a)(1 + a)(1 + a4),

α′13 =
1

8
(1− a)(1 + a2)(1 + a4),

B11 =
1

15
(1 + b+ b2 + ...+ b14).

If ε is a primitive 8th root of 1 then for the simple components of the
semisimple group algebra QG we get QGe101 ∼= QGe131 ∼= Q; QGe111 ∼=

Q (ε); QGe121 ∼= Q (i). Then
3∑
j=0

QGe1j1 ∼= Q⊕Q⊕Q (ε)⊕Q (i).

Second case. For d = 3, k = 2 the minimal central orthogonal
idempotents of the algebra QG are e3j1 = α′3jB31 for j = 0, 1, 2, where

α′30 =
1

4
(1 + a2)(1 + a4),

α′31 =
1

2
(1− a)(1 + a)(1 + a2),

α′32 =
1

4
(1− a)(1 + a)(1 + a4),

B31 =
1

15
(2− b− b2)(1 + b3 + b6 + b9 + b12).

In this case one of the simple components of the algebra QG is
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QGe301 ∼= M2 (Q). For the other two simple components of the algebra

QG we will prove that QGe311 ∼= M2 (Q (i)) and QGe321 ∼=
(
−1,−3
Q

)
, where(

−1,−3
Q

)
is a division ring of the quaternions over Q.

First we will prove that QGe311 ∼= M2 (Q (i)). We will denote e =
e311. The ideal QGe is determined by the conditions

a4e = −e, b2e+ be+ e = 0, a−1bae = b2e.

We consider the map φ : QGe → M2 (Q (i)), for which φ (ae) =(
0 1
i 0

)
, φ (be) =

(
i 1
−i −1− i

)
. It is easy to see that φ is an isomorphism

and that QGe ∼= M2 (Q (i)).

We will prove that QGe321 ∼=
(
−1,−3
Q

)
, where

(
−1,−3
Q

)
is the division

ring of quaternions over Q. We denote

e = e321 =
1

60

(
1− a2

) (
1 + a4

)
(2− b− b2)(1 + b3 + b6 + b9 + b12).

It is to see that the ideal QGe is determined by the conditions a2e = −e,
b2e + be + e = 0, a−1bae = b2e. Let ce = 2be + e be a new generator of
QGe. Then c2e = −3e and a−1cae = 2a−1bae + e = −2be − 2e + e =
−ce, from where cae = −ace. So QGe is isomorphic to the ring with
determining conditions (ae)2 = −e, c2e = −3e, cae = −ace. But those are

also determining conditions of the division ring
(
−1,−3
Q

)
of the quaternions

over Q (see [11, §1.6., Definition]). Therefore QGe321 ∼=
(
−1,−3
Q

)
.

Finally for the second case,
2∑
j=0

QGe3j1 ∼= M2(Q) ⊕ M2(Q (i)) ⊕(
−1,−3
Q

)
.

Third case. For d = 5, k = 4 the minimal central orthogonal
idempotents of the algebra QG are e5j1 = α5jB51 for j = 1, 2, where

α51 =
1

2
(1 + a4),

α52 =
1

2
(1− a4),

B51 =
1

15
(4− b− b2 − b3 − b4)(1 + b5 + b10).
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Then the simple components of the algebra QG are QGe511 ∼= M4 (Q)
and QGe521 ∼= D16, where D is a division ring with dimension 16 over
Q with determining conditions a4e = −e, b4e + b3e + b2e + be + e = 0,
a−1bae = b2e.

We will prove that QGe511 ∼= M4 (Q), where

e511 =
1

2
(1 + a4)(4− b− b2 − b3 − b4)(1 + b5 + b10).

The equation (1 + b + b2 + b3 + b4)e511 = 0 holds. The element
e′ = 1

4(1 + a)(1 + a2)e511 is minimal non-central idempotent of QGe511.

It is easy to verify that e′aie′ = e′ ∈ Qe′ ∼= Q, e′bje′ = −1
4e
′ ∈ Qe′ and

e′aibje′ = −1
4e
′ ∈ Qe′ for i = 0, 1, ..., 7 and j = 0, 1, ..., 14. Therefore

e′QGe′ ∼= Q and then QGe511 ∼= M4 (Q).

The proof of the isomorphism QGe521 ∼= D16 is standard.

Finally in the third case we obtain QGe511⊕QGe521 ∼= M4 (Q)⊕D16.

Fourth case. For d = 15, k = 4 the minimal central orthogonal
idempotents of the algebra QG are e15j1 = α15jB

′
151 for j = 1, 2, where

α151 =
1

2
(1 + a4),

α152 =
1

2
(1− a4),

B′151 =
1

15
(8 + b+ b2 − 2b3 + b4 − 4b5 − 2b6

+ b7 + b8 − 2b9 − 4b10 + b11 − 2b12 + b13 + b14).

Let λ = η+η2+η4+η8 and η be a primitive 15th root of the 1. In this
case the simple components of the algebra QG are QGe1511 ∼= M4 (Q(λ))
and QGe1521 ∼= D′16. Here D′16 is a division ring with dimension 16 over
Q(λ) and has the following determining conditions: a4e1521 = −e1521, (1−
b+ b3 − b4 + b5− b7 + b8)e1521 = 0, a−1bae1521 = b2e1521.

We will prove that QGe1511 ∼= M4 (Q(λ)). The equations hold:

a4e1511 = e1511 and (c2 − c+ 4)e1511 = 0,

where c = b+b2+b4+b8 is a central element of QG. Obviously Q(c) ∼= Q(λ)
and dimQQ(c) = 2. The element e′′ = 1

4(1 + a)(1 + a2)e1511 is non-central
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minimal idempotent of QGe1511. It is easy to see that

e′′aie′′ = e′′ ∈ Q(c)e′′ ∼= Q(c),

e′′bje′′ = −c
4
e′′ ∈ Q(c)e′′,

e′′aibje′′ = −c
4
e′′ ∈ Q(c)e′′ for i = 0, 1, ..., 7, and j = 0, 1, ..., 14.

Therefore e′′QGe′′ ∼= Q(λ) and QGe1521 ∼= M4 (Q(λ)).

In this case we obtain QGe1511 ⊕QGe1521 ∼= M4 (Q(λ))⊕D′16.
Finally for the second example the Wedderburn decomposition of the

semisimple group algebra QG of the metacyclic group G is:

QG ∼=Q⊕Q⊕Q (ε)⊕Q (i)⊕M2(Q)⊕M2(Q (i))⊕(
−1,−3

Q

)
⊕M4 (Q)⊕D16 ⊕M4 (Q (λ))⊕D′16.
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