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Abstract. A class of third degree polynomials is considered with roots
depending on the vertices of a quadrilateral. A geometric relation is derived
concerning the roots of such polynomials and the foci of the quadrilateral in-
conics and the intersection point of its diagonals. At the end, polynomials
of a real variable and with real coefficients are considered as an application.
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A geometric relation is described in [6] concerning one type of poly-
nomials with roots in the vertices of a convex quadrilateral and the roots
of the corresponding derivatives. The relation is contained in the following
assertion:

Theorem 1.1. Let kj (j = 1, 2, 3, 4) be positive integers and k be an ellipse
which is inscribed in the convex quadrilateral A1A2A3A4 in such a way that
for the segments A1A2, A2A3, A3A4, A4A1 and the corresponding tangent
points P1, P2, P3, P4 on k the following equations are verified:

A2P2 : A3P2 = −k2 : k3,

A3P3 : A4P3 = −k3 : k4,

A4P4 : A1P4 = −k4 : k1.

If a polynomial P (z) of a complex variable, of degree n = k1 + k2 + k3 +
k4 and with complex coefficients has a kj- multiple root in the vertex Aj

(j = 1, 2, 3, 4) of A1A2A3A4, then the derivative of P (z) has roots in the
point P0 = A1A3 ∩ A2A4 and in the foci of the ellipse k.

It follows from this theorem that the mentioned geometric relation
contains the intersection point of the diagonals of the quadrilateral un-
der consideration and the foci of a suitable ellipse, which is inscribed in
the quadrilateral. In addition, the tangent points divide the sides of the
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quadrilateral in rational simple quotients. From one side, ellipses could be
inscribed in the quadrilateral with tangent points dividing the sides in irra-
tional simple quotients. From another side, the quadrilateral has ex-conics,
some of which are ellipses too. A question could be raised for the existence
of polynomials with coefficients depending on the vertices of a quadrilateral
(not convex obligatorily) and an arbitrary conic, which is inscribed in it.
From its part the location of the roots of such polynomials should be the
same as the one of the roots of the derivative in the mentioned theorem.

Such polynomials could be realized by means of functions of the form

f (z) = a0(z − a1)k1(z − a2)k2(z − a3)k3(z − a4)k4,
where a0, a1, a2, a3, a4 are complex numbers, while k1, k2, k3 and k4 are
real numbers different from zero. The derivative of this function could be
presented in the form:

f ′ (z) = a0(z − a1)k1−1(z − a2)k2−1(z − a3)k3−1(z − a4)k4−1.P (z) ,

where

P (z) = k1 (z − a2) (z − a3) (z − a4) + k2 (z − a3) (z − a4) (z − a1) +

+ k3 (z − a4) (z − a1) (z − a2) + k4 (z − a1) (z − a2) (z − a3) .

The function P (z) is a polynomial of degree 3 at most and could be
presented in the form

P (z) = az3 − bz2 + cz − d, (1)

where

a = k1 + k2 + k3 + k4,

b = (a2 + a3 + a4) k1 + (a3 + a4 + a1) k2+

+ (a4 + a1 + a2) k3 + (a1 + a2 + a3) k4,

c = (a2a3 + a3a4 + a4a2) k1 + (a3a4 + a4a1 + a1a3) k2+

+ (a4a1 + a1a2 + a2a4) k3 + (a1a2 + a2a3 + a3a1) k4,

d = a2a3a4k1 + a3a4a1k2 + a4a1a2k3 + a1a2a3k4.

Polynomials of the form (1) solve the raised question, when a1, a2,
a3, a4 are the affixes of the vertices of the quadrilateral A1A2A3A4. The
solution is expressed by the next:

Theorem 1.2. Let the lines A1A2, A2A3, A3A4 and A4A1 be tangent to the
conic k at the points P1, P2, P3 and P4, respectively defining the quadrilat-
eral A1A2A3A4, while the real numbers k1, k2, k3 and k4 be such that the
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following equations are verified:

A1P1 : A2P1 = −k1 : k2, A2P2 : A3P2 = −k2 : k3,

A3P3 : A4P3 = −k3 : k4, A4P4 : A1P4 = −k4 : k1.
(2)

1) If k is an ellipse or a hyperbola, then the roots of the polynomial
(1) are located in the foci of k and the point U = A1A3 ∩ A2A4;

2) If k is a parabola, then k1 + k2 + k3 + k4 = 0, while the roots
of the polynomial (1) are located in the focus of k and the point
U = A1A3 ∩ A2A4.

Proof. The proof of this theorem could be elaborated in the following way:
Let the focus of the ellipse k be in the point O, let the focal parameter be
p and the number eccentricity be e. As shown in [5] and [7], with respect
to the Gaussian coordinate system K0 from Figure 1 the affixes pj and
aj of the points Pj and Aj (j = 1, 2, 3, 4) are expressed by the formulae,
respectively

p1 =
2p

e.t21 + 2t1 + e
, p2 =

2p

e.t22 + 2t2 + e
,

p3 =
2p

e.t23 + 2t3 + e
, p4 =

2p

e.t24 + 2t4 + e
.

(3)

a1 =
2p

et4t1 + t4 + t1 + e
, a2 =

2p

et1t2 + t1 + t2 + e
,

a3 =
2p

et2t3 + t2 + t3 + e
, a4 =

2p

et3t4 + t3 + t4 + e
,

(4)

where |t1| = |t2| = |t3| = |t4| = 1.

Figure 1.
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Now, we will find dependencies between the parameters under consid-
eration aiming at fulfillment of the equations (2). Since the simple quotient
of arbitrary three points Ak, Al and Pj from one line is expressed by the

equation
AkPj

AlPj
=
ak − pj
al − pj

, the following equations could be derived from

(3) and (4) after some not complicated computations

A1P1

A2P1

=
t4 − t1
t2 − t1

.
a1
a2
,

A2P2

A3P2

=
t1 − t2
t3 − t2

.
a2
a3
,

A3P3

A4P3

=
t2 − t3
t4 − t3

.
a3
a4
,

A4P4

A1P4

=
t3 − t4
t1 − t4

.
a4
a1
.

(5)

From (5) we obtain

a2 = −k2
k1
.
t4 − t1
t2 − t1

.a1, a3 = −k3
k1
.
t4 − t1
t3 − t2

.a1, a4 = −k4
k1
.
t4 − t1
t4 − t3

.a1. (6)

It follows from (6) that

d = a2a3a4k1 + a3a4a1k2 + a4a1a2k3 + a1a2a3k4 = 0.

Consequently, z = 0 is a root of P (z). Thus, it is proved that one of
the foci O of k is a root of P (z). If k has a second focus F , the proof that
it is a root of P (z) could be obtained moving the coordinate origin to F .

Now, we will show that the point U is a root of P (z). Since A3U :

A1U = −k3 : k1 and A4U : A2U = −k4 : k2, then
−→
OU =

k3
−−→
OA1 + k1

−−→
OA3

k3 + k1

and
−→
OU =

k4
−−→
OA2 + k2

−−→
OA4

k4 + k2
. Using (6) for the affix of U , we obtain the

next two equations:

u =
k3 (t1 − t2 + t3 − t4)
(t3 − t2) (k3 + k1)

a1,

u =
k2k4 (t4 − t1) (t1 − t2 + t3 − t4)
k1 (t1 − t2) (t3 − t4) (k2 + k4)

a1.

(7)

Equalizing the values of u from (7) we obtain the dependence

(k1k2k3 + k2k3k4 + k3k4k1 + k4k1k2) (t3t1 + t4t2) =

= k3k1 (k4 + k2) (t2t3 + t4t1) + k4k2 (k3 + k1) (t1t2 + t3t4) .
(8)
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From (1) and (7) we have

P (u) =
k3[k1 (t2 − t3)− k3 (t4 − t1)]2 (t1 − t2 + t3 − t4) a31

k21(k3 + k1)
3 (t1 − t2) (t2 − t3)3 (t3 − t4)

×

× [(k1k2k3 + k2k3k4 + k3k4k1 + k4k1k2) (t3t1 + t4t2) −
− k3k1 (k4 + k2) (t2t3 + t4t1) + k4k2 (k3 + k1) (t1t2 + t3t4)] .

It follows from here and the equation (8) that P (u) = 0, which means
that u is a root of P (z). Thus, the assertion of the theorem is proved for
the intersection point of the diagonals of A1A2A3A4 too.

It remains to prove that when k is a parabola, then k1+k2+k3+k4 =
0. From the equations (4) and (6) we obtain

k2 =
(t2 − t1) (et4t1 + t4 + t1 + e) k1
(t1 − t4) (et1t2 + t1 + t2 + e)

,

k3 =
(t3 − t2) (et4t1 + t4 + t1 + e) k1
(t1 − t4) (et2t3 + t2 + t3 + e)

,

k4 =
(t4 − t3) (et4t1 + t4 + t1 + e) k1
(t1 − t4) (et3t4 + t3 + t4 + e)

.

It follows from here that

k1 + k2 + k3 + k4 = k1
(
e2 − 1

)
(t1 − t3) (t2 − t4)×

× [(t1 − t2 + t3 − t4 + t1t2t3 − t2t3t4 + t3t4t1 − t4t1t2) + 2 (t1t3 − t2t4)]
(t1 − t4) (et1t2 + t1 + t2 + e) (et2t3 + t2 + t3 + e) (et3t4 + t3 + t4 + e)

.

When e = 1 it follows from the last equation that k1+k2+k3+k4 = 0.

Thus, the theorem is proved.

If polynomials of a real variable and with real coefficients are con-
sidered, we could present some geometric interpretations of the proved
theorem. Two ellipses kP and kQ are shown in Figure 2 inscribed in a
deltoid. The corresponding polynomials are P (x) and Q (x). Figure 3
presents a hyperbola kR and a parabola kS, inscribed in the same deltoid.
The corresponding polynomials are R (x) and S (x). The polynomial S (x)
is of second degree (its graphical representation is a parabola), as it is
envisaged in the proved theorem. A hyperbola kM and an ellipse kL are
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shown in Figure 4 inscribed in a rhombus. The corresponding polynomials
are M (x) and L (x). No parabola exists in this case. All cases are realized
when k1 = 0, 05.

Figure 2. Figure 3.

Figure 4.
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